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Abstract
We use generating functional methods to solve the so-called inner product
versions of the minority game (MG), with fake and/or real market histories,
by generalizing the theory developed recently for look-up table MGs with
real histories. The phase diagrams of the look-up table and inner product MG
versions are generally found to be identical, with the exception of inner product
MGs where histories are sampled linearly, which are found to be structurally
critical. However, we encounter interesting differences both in the theory
(where the role of the history frequency distribution in look-up table MGs is
taken over by the eigenvalue spectrum of a history covariance matrix in inner
product MGs) and in the static and dynamic phenomenology of the models.
Our theoretical predictions are supported by numerical simulations.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

Minority games (MG) [1, 2] are relatively simple and transparent models that were designed
to increase our understanding of the complex collective processes which result from inductive
decision making by large numbers of interacting agents in simplified ‘markets’. They can
be seen as mathematical implementations of the so-called El Farol bar problem [3]. Many
versions of the MG have by now been studied in the literature. They differ in the type of
microscopic dynamics used (e.g. batch versus on-line, stochastic versus deterministic), in the
definition of the information provided to the agents (real-valued versus discrete, true versus
fake market history) and the agents’ decision making strategies, and also in the specific recipe
defined for the conversion of the external information into a trading action (inner products
versus look-up tables). In MG models with ‘fake’ market memory, proposed first in [4],
at each point in time all agents are given random data upon which to base their decisions,
rather than the actual market history. They have the advantage of being Markovian and were
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therefore the first to be studied and solved in the theoretical physics literature using techniques
from equilibrium [5, 6] and non-equilibrium [7–9] statistical mechanics, as first developed
for and applied to spin-glasses. Models with true market history are non-Markovian and
therefore more demanding, but also here theoretical progress is being made [10, 11]. For a
more extensive introduction to MGs and their statistical mechanical theory we refer to the
recent textbooks [12, 13].

To our knowledge, however, there has not yet been any such exact solution for MG
models in which the decision making strategies are defined via inner products rather than
look-up tables [14, 15]; not even for the simplest Markovian case, where the market histories
are fake1. Inner product MGs have so far tended to be studied either numerically, or at the
level of investigating properties of the stochastic microscopic laws, in spite of the fact that
one might well argue that the definitions of the ‘inner product MGs’ are possibly closer to
how financial time series tend to be predicted by practitioners [21] (as these usually involve
generalized linear market prediction models). Moreover, in fact not a single study has so far
been published of inner product MGs with real as opposed to fake histories, there are not even
papers based on numerical simulations only.

In this paper we first generalize the existing generating functional theory [11] that was
developed for look-up table MGs with real and/or fake histories to a larger class of MG
versions, which includes the familiar look-up table MGs and inner product MGs as special
cases. We then focus on the analysis of the dynamics and phase transitions of inner product
MG versions with and without real histories, and show that in the infinite system size limit:
(i) for inconsistent fake histories the inner product and look-up table MG versions behave fully
identically, including short time correlation and response functions and the volatility (apart
from a trivial transformation related to time-scales), (ii) similar to what was found in [11]
for look-up table MGs, for inner product MGs the introduction of real histories affects the
observables in the ergodic region, but does not generally change the phase diagram, except
when the histories are sampled by unbounded functions (see below), (iii) the key observable
to measure the differences between real and fake histories in our generalized MG models is
the spectrum of the history covariance matrix in the stationary state, which for inner product
MGs reduces to the history frequency distribution, (iv) for inner product MGs an approximate
calculation of this spectrum leads to a fully closed stationary state theory, the predictions of
which are supported by numerical simulations, and (v) inner product MGs with predominantly
real histories where the inner product is taken between strategy entries and the actual values
of the past market bids (or, more generally, by an unbounded function of these bids rather
than e.g. a saturating function) are permanently critical, giving a volatility that is either zero
or infinity (separated by a novel critical value for the control parameter α, unrelated to the
standard ergodicity breaking transition point).

2. Definitions

We imagine having a system of N agents, labeled by i = 1, . . . , N . At each step � ∈
{0, 1, 2, . . .} of the game each agent submits a ‘bid’ bi(�) ∈ R to the market. The (re-scaled)
cumulative bid at stage � is defined as

A(�) = 1√
N

∑
i

bi(�) + Ae(�). (1)

1 At least qualitative equivalence between inner product and look-up table MGs was anticipated for models with fake
histories on the basis of an approximate analysis of the processes involved [16, 17].
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Here Ae(�) denotes an external contribution that represents e.g. random market perturbations
or actions by market regulators. Each agent i determines his bid bi(�) at each step � on the
basis of external information, which is to represent historic market data, using his preferred
decision making strategy at that point in time. Each agent has S such strategies, labeled by
a = 1, . . . , S. Profit is made by those agents who find themselves subsequently in the minority
group, i.e. in the case of A(�) > 0 by those with bi(�) < 0 and in the case of A(�) < 0 by
those with bi(�) > 0.

MG versions differ in their definition of the information provided to the agents and in
how this information is converted into trading decisions. In the original MG, the information
consisted of the signs of the overall market bids A(�) over a number of time steps in the
past. In inner product MGs, in contrast, the external information at stage � will consist of a
p-dimensional vector I(�) (generalizing the ‘information vector’ of [14, 15]), where α = p/N

remains finite as N → ∞, with entries

Iλ(�) = 1√
p

f [(1 − ζ )A(� − λ) + ζZ(�, λ)] (2)

and with λ ∈ {1, . . . , p}. The function f [.] (which we choose to be anti-symmetric) allows
the information given to the agents to involve more general properties of the overall bids than
just their sign, on which the original model [1, 2] was based. The Z(�, λ) are zero-average
Gaussian random variables, which represent the ‘fake’ alternative to the true market data
A(� − λ), and p is the number of iteration steps in the past for which market information is
made available. For reasons that will become clear we write Iλ(�) = p− 1

2 Fλ[�,A,Z], so

Fλ[�,A,Z] = f [(1 − ζ )A(� − λ) + ζZ(�, λ)]. (3)

If we ensure that f [.] remains finite, one has limN→∞
∑

λ[Iλ(�)]2 = O(1) for all �. Definition
(2) implies that for ζ = 1 the external information is fully random, whereas for ζ = 0 it
represents true historic market data. Following [11] we distinguish between two types of
definitions for the statistical properties of the ‘fake memory’ variables:

consistent : Z(�, λ) = Z(� − λ), 〈Z(�)Z(�′)〉 = S2δ��′ (4)

inconsistent : Z(�, λ) all independent, 〈Z(�, λ)Z(�′, λ′)〉 = S2δ��′δλλ′ . (5)

We take the agents’ strategies to be represented by vectors Ria ∈ R
p with components Ria

λ . In
accordance with standard definitions [14, 15] we choose these components to be independent
zero-average and unit-variance Gaussian random variables, assigned before the start of the
game, and remaining fixed throughout. They represent quenched disorder. The arrival of
information I(�) at step � prompts each agent i to submit the bid bi(�) = ∑

λ R
iai (�)
λ Iλ(�),

where ai(�) denotes the preferred strategy at stage � of agent i. In order to detect which of
their S private strategies to use, all agents keep track of valuations pia(�) of their strategies.
These measure to what extent each strategy would have led to minority decisions if it had been
used all the time:

pia(� + 1) = pia(�) − η̃√
N

A(�)
∑

λ

Ria
λ Iλ(�). (6)

The factor η̃ > 0 represents a learning rate. The active strategy ai(�) of trader i at
stage � is chosen to be the one with the highest valuation pia(�) at that moment, i.e.
ai(�) = arg maxa{pia(�)}. Our full equations now become, in more explicit form and with the
notation (3):

pia(� + 1) = pia(�) − η̃

N
√

α

∑
λ

Ria
λ Fλ[�,A,Z]A(�) (7)
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A(�) = 1√
αN

∑
i

∑
λ

R
iai (�)
λ Fλ[�,A,Z]. (8)

Henceforth we restrict ourselves to the case S = 2, two strategies per agent so a ∈ {1, 2}, and
introduce the conventional definitions

qi(�) = 1
2 [pi1(�) − p12(�)], ωi = 1

2 (Ri1 + Ri2), ξi = 1
2 (Ri1 − Ri2)

as well as Ω = N−1/2∑
i ωi . This allows us to write Ria(�) = ωi + sgn[qi(�)]ξi . We

then proceed to include decision noise in the familiar way via the substitution sgn[qi(�)] →
σ [qi(�), zi(�)], in which the {zi(�)} are independent zero average random numbers, described
by a symmetric and unit-variance distribution P(z). The function σ [q, z] is taken to be non-
decreasing in q for any z, and parametrized by a parameter T � 0 such that σ [q, z] ∈ {−1, 1},
with limT →0 σ [q, z] = sgn[q] and limT →∞

∫
dzP (z)σ [q, z] = 0. The two main examples

are additive and multiplicative noise:

additive : σ [q, z] = sgn[q + T z] (9)

multiplicative : σ [q, z] = sgn[q] sgn[1 + T z] (10)

T measures the degree of randomness in the agents’ decision making, with T = 0 bringing us
back to ai(�) = arg maxa{pia(�)}, and with random strategy selection for T = ∞. In on-line
MG theories one will in practice only need the decision noise average

σ [q] =
∫

dzP (z)σ [q, z]. (11)

Upon also adding the usual external perturbation fields {θi(�)} to define response functions,
our microscopic equations (7), (8) are then replaced by

qi(� + 1) = qi(�) + θi(�) − η̃

N
√

α

p∑
λ=1

ξ i
λFλ[�,A,Z]A(�) (12)

A(�) = Ae(�) +
1√
αN

p∑
λ=1

{

λ +

1√
N

∑
i

σ [qi(�), zi(�)]ξ
i
λ

}
Fλ[�,A,Z]. (13)

The values of A(�) for � � 0 and of the qi(0) play the role of initial conditions.
Equations (12), (13) are identical to those studied in [11] for look-up table MGs; the only

difference between look-up table and inner product definitions for the information-to-decision
conversion in the MG is in the definition of the function Fλ[�,A,Z]. We may thus take over
from [11] the derivation of the effective single agent problem, and simply make the appropriate
substitutions in the final result2:

look-up table : λ ∈ {−1, 1}M, 2M = p, Fλ[�,A,Z] =
√

αNδλ,λ(�,A,Z)

λµ(�,A,Z) = sgn[(1 − ζ )A(� − µ) + ζZ(�, µ)] (14)

inner product : λ ∈ {1, . . . , p}, Fλ[�,A,Z] = f [(1 − ζ )A(� − λ) + ζZ(�, λ)]. (15)

The inner product models of [14, 15] correspond to choosing recipe (15), with ζ = 1 (fake
history) and f [A] = A, giving Fλ[�,A,Z] = Z(�, λ).

2 In fact, the formulation of the derivation in [11] was chosen with the present generalization in mind.
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3. Generating functional analysis of generalized MGs

3.1. The effective single agent equation

We choose the real-time duration of individual iterations of the MG equations to be δN = η̃/2p.
This was proposed within the replica approach [5, 6, 10], and later confirmed to be the canonical
scaling via generating functional analysis studies [9, 11]. The generating functional analysis
in [11], which via (15) can be made to apply also to inner-product models, leads as always to
closed deterministic dynamical order parameter equations which are fully exact in the limit
N → ∞ and on times which do not scale with N. The order parameters are the disorder-
averaged single-site correlation and response function, which in terms of the original discrete
iterations � = 0, 1, 2, . . . are defined as

C(�, �′) = lim
N→∞

1

N

∑
i

〈σ [qi(�), zi(�)]σ [qi(�′), zi(�′)]〉 (16)

G(�, �′) = lim
N→∞

1

N

∑
i

∂

∂θi(�′)
〈σ [qi(�), zi(�)]〉. (17)

The brackets 〈. . .〉 refer to averaging over all realizations of both the decision noise variables
{zi(�)} and the fake bid variables {Z(�, λ)}, at all times. It was shown in [11] (to which
we refer for details) that for N → ∞ and in terms of new time variable t = �δN (which
will become real-valued in this limit) the order parameters (16), (17) are to be extracted self-
consistently from the following disorder-free effective single agent process with a retarded
self-interaction and zero-average Gaussian noise η(t) with non-trivial temporal correlations
〈η(t)η(t ′)〉 = �(t, t ′):

d

dt
q(t) = θ(t) − α

∫ t

0
dt ′R(t, t ′)σ [q(t ′)] +

√
αη(t). (18)

As a result of the limit N → ∞ we must also write C(�, �′) → C(t, t ′) and G(�, �′) →
G(t, t ′). One always has G(t, t ′) = 0 for t � t ′ (due to causality), and C(t, t ′) = C(t ′, t)
with C(t, t) = 1. If we write averages over realizations of the non-Markovian process (18) as
〈. . .〉, the kernels {C,G} must satisfy for t > t ′:

C(t, t ′) = 〈σ [q(t)]σ [q(t ′)]〉 G(t, t ′) = δ

δθ(t ′)
〈σ [q(t)]〉. (19)

The relation between the auxiliary kernels {R,�} and the order parameters {C,G} was found
to be defined via an effective process for the overall bid A(�), namely by

R(t, t ′) = δ

δAe(t ′)
lim

δN→0
〈〈W [�′, �; {A,Z}]A(�)〉〉{A,Z}|�=t/δN ,�′=t ′/δN

(20)

�(t, t ′) = η̃ lim
δN→0

δN
−1〈〈W [�, �′; {A,Z}]A(�)A(�′)〉〉{A,Z}|�=t/δN ,�′=t ′/δN

. (21)

Here 〈〈. . .〉〉A,Z refers to an average over this effective stochastic process for the bids {A} and
the pseudo-history {Z}, a process that was found [11] to take the form

A(�) = Ae(�) + φ� − 1

2
η̃
∑
�′<�

G(�, �′)W [�, �′; {A,Z}]A(�′) (22)

with zero-average Gaussian random fields {φ}, characterized by

〈φ�φ�′ 〉{φ|A,Z} = 1
2 [1 + C(�, �′)]W [�, �′; {A,Z}]. (23)
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The function W [.; .] in these formulae is defined as

W [�, �′; {A,Z}] = 1

p

∑
λ

Fλ[�,A,Z]Fλ[�′, A,Z]. (24)

The macroscopic theory is closed. The remaining problem is to (i) express the kernels {R,�}
in terms of {C,G} using (20), (21), followed by (ii) calculating the order parameters {C,G}
from (19).

It is quite satisfactory to find that the theory of [11] can be made to apply to a much
broader class of MG models, which saves us from having to redo the generating functional
analysis here. Mathematically, the differences between the two main MG families (look-up
table versus inner product strategies) are within the macroscopic theory found to be limited to
which expression to substitute in equations (20)–(22) for the function W [�, �′; {A,Z}], which
measures the similarity between the market ‘histories’ (whether fake or real) as observed at
stages � and �′ of the process:

look-up table: W [�, �′; {A,Z}] = δλ(�,A,Z),λ(�′,A,Z) (25)

inner product : W [�, �′; {A,Z}] = 1

αN

∑
λ

f [(1 − ζ )A(� − λ) + ζZ(�, λ)]

× f [(1 − ζ )A(�′ − λ) + ζZ(�′, λ)]. (26)

Here λ(�, A,Z) ∈ {−1, 1}M (with 2M = p) denotes the ‘history string’ as observed by agents
in the look-up table MGs at time �, with entries λk(�,A,Z) = sgn[(1−ζ )A(�−k)]+ζZ(�, k)].
Similarly, the differences between the two ‘fake memory’ definitions (4), (5) are limited to the
details of the zero-average Gaussian variables {Z} in (25), (26) and the associated averaging
process 〈. . .〉Z .

3.2. Time translation invariant stationary states

In the special case of fully ergodic and time-translation invariant states (TTI) without
anomalous response, where C(t, t ′) = C(t − t ′),G(t, t ′) = G(t − t ′), R(t, t ′) = R(t − t ′) and
�(t, t ′) = �(t − t ′), one can derive from the effective single agent equation relatively simple
and familiar expressions for persistent order parameters [11]. The relevant scalar quantities
are χ = ∫∞

0 dtG(t), χR = ∫∞
0 dtR(t), c = limt→∞ C(t), and the fraction φ of ‘frozen’ agents

in the game. They were found [11] to obey:

φ = 1 − Erf[u] (27)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
(28)

χ = Erf[u]/αχR (29)

with the short-hands u = √
αχRσ [∞]/S0

√
2 and S2

0 = �(∞). In order to find the TTI
stationary solution {φ, c, χ} and the phase transition point (defined by χ → ∞), we therefore
do not need to solve for our order parameter kernels in full but just need to extract expressions
for χR and S0 from the stochastic overall bid process (22). These latter two quantities can be
written as

χR = lim
δN →0

{
W [0, 0; {A,Z}] +

∞∑
�=1

∂

∂A(0)
〈〈W [�, 0; {A,Z}]A(�)〉〉{A,Z}

}
(30)

6
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S2
0 = lim

δN →0
lim

L→∞
η̃

L2δN

L∑
�,�′=1

〈〈W [�, �′; {A,Z}]A(�)A(�′)〉〉{A,Z}. (31)

Note that A(0) and W [0, 0; {A,Z}] express the initial conditions; for the purpose of evaluating
the stationary state we may now drop the global bid perturbations {Ae(t)}.

3.3. Expressions for the kernels R and �

In order to work out the theory also away from TTI stationary states and compare it to that of
look-up table MGs, knowledge of just χR and S0 is no longer sufficient; one needs to calculate
the kernels R and � in full. Here it is no longer clear to what extent the analysis of [11] can
be adapted. The differences between the two model families start to manifest themselves. We
first define

�r+1(�0, . . . , �r ) = pr

〈〈
W [�0, �r; {A,Z}]

r∏
i=1

W [�i−1, �i; {A,Z}]
〉〉

{A,Z}
(32)

�̃r+r ′+2(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = pr+r ′+1

〈〈
W [�0, �

′
0; {A,Z}]W [�r , �

′
r ′ ; {A,Z}]

×
[

r∏
i=1

W [�i−1, �i; {A,Z}]
][

r ′∏
j=1

W [�′
j−1, �

′
j ; {A,Z}]

]〉〉
{A,Z}

. (33)

As was done in in [11] we re-write the global bid equation (22) as∑
�′��

{
δ��′ +

1

2
η̃G(�, �′)W [�, �′; {A,Z}]

}
A(�′) = Ae(�) + φ�

and we invert the operator on the left-hand side, using δN = η̃/2p:

A(�) = Ae(�) + φ� +
∑
r>0

(−δNp)r
∑
�1...�r

G(�, �1)G(�1, �2) . . . G(�r−1, �r )

× W [�, �1; {A,Z}]W [�1, �2; {A,Z}] . . . W [�r−1, �r ; {A,Z}][Ae(�r) + φ�r

]
. (34)

We insert (34) into (20), and consider only infinitesimal external bid perturbations Ae:

R(t, t ′) = δ(t − t ′) + lim
δN →0

1

δN

{∑
r>0

(−δN)r
∑

�1...�r−1

G(�0, �1)G(�1, �2) . . . G(�r−1, �r )

×pr

〈〈
W [�0, �r ; {A,Z}]

r∏
i=1

W [�i−1, �i; {A,Z}]
〉〉

{A,Z}

}∣∣∣∣∣
�0= t

δN
,�r= t ′

δN

= δ(t − t ′) + lim
δN→0

1

δN

{∑
r>0

(−δN)r
∑

�1...�r−1

G(�0, �1) . . . G(�r−1, �r )

×�r+1(�0, . . . , �r )

}∣∣∣∣∣
�0= t

δN
,�r= t ′

δN

. (35)

This is clearly identical to the corresponding expression found in [11] (although now the
meaning of the kernels �k(. . .) is allowed to be different, dependent on which model family
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we choose to apply the generalized theory to). Similarly we can insert (34) into (21), again
with Ae → 0, and find

�(t, t ′) = η̃ lim
δN→0

1

δN

{ ∑
r,r ′�0

(−δN)r+r ′ ∑
�1...�r

G(�0, �1) . . . G(�r−1, �r)

×
∑

�′
1...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)p

r+r ′
〈〈

〈φ�r
φ�′

r′
〉{φ|A,Z}W [�0, �

′
0; {A,Z}]

×
[

r∏
i=1

W [�i−1, �i; {A,Z}]
][

r ′∏
j=1

W [�′
j−1, �

′
j ; {A,Z}]

]〉〉
{A,Z}

}∣∣∣∣∣
�0= t

δN
,�′

0= t ′
δN

= lim
δN→0

{ ∑
r,r ′�0

(−δN)r+r ′ ∑
�1...�r

G(�0, �1) . . . G(�r−1, �r )

×
∑

�′
1...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)[1 + C(�r, �

′
r ′)]

×�̃r+r ′+2(�0, . . . , �r; �′
0, . . . , �

′
r ′)

}∣∣∣∣∣
�0= t

δN
,�′

0= t ′
δN

. (36)

The limits δN → 0 in (35), (36) are well-defined. Each time summation combines with a factor
δN to generate an integral, whereas pairwise identical times in (36) leave a ‘bare’ factor δN

but can also be anticipated to cause �̃r+r ′+2(. . .) gaining a factor p = η̃/2δN in compensation.
Equations (35), (36) show, upon inserting the respective definitions (25, 26) of the function

W [.; .], that replacing look-up table strategy definitions by inner product ones does have
implications. For instance, the following relation holds for look-up table MGs but appears to
be no longer valid for inner product ones:

�̃r+r ′+2(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = �r+r ′+2(�0, . . . , �r ; �′

0, . . . , �
′
r ′) (37)

4. Inner product MGs with inconsistent fake market history

The simplest instance of our inner product MG model is the case ζ = 1, i.e. fake market history,
of the inconsistent type. Here the function W [�, �′; {A,Z}] = p−1∑

λ f [Z(�, λ)]f [Z(�′, λ)]
is no longer dependent on the real market bids A, and 〈Z(�, λ)Z(�′, λ′)〉 = S2δ��′δλλ′ . Even for
this case no exact macroscopic solution has so far been published. We define the short-hands
Z̃�,λ = f [Z(�, λ)] and κn = ∫ Dz f n[Sz] with the Gaussian measure Dz = (2π)−

1
2 e− 1

2 z2
dz

(since f [A] is anti-symmetric, κn = 0 for all odd n).

4.1. The retarded self-interaction kernel R

To proceed we have to calculate the two functions (32), (33). They occur only in expressions
(35) and (36), where causality of the response function G enforces a helpful ordering of the
time arguments. The kernel �r+1(�0, . . . , �r ) as occurring in (35) is easy to evaluate, since
here we may use �0 > �1 > · · · > �r . This property, in combination with κ1 = 〈Z̃�,λ〉 = 0 for
all (�, λ), implies that the only non-zero contributions are those where the Gaussian variables
{Z̃} have pair-wise identical indices:

�r+1(�0, . . . , �r ) = 1

p

p∑
λ0...λr=1

〈
Z̃�0,λ0Z̃�r ,λ0

r∏
i=1

Z̃�i−1,λi
Z̃�i ,λi

〉
{Z}

8
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= 1

p

p∑
λ0...λr=1

〈
Z̃�0,λ0Z̃�0,λ1

〉( r−1∏
i=1

〈Z̃�i ,λi
Z̃�i ,λi+1〉

)〈
Z̃�r ,λr

Z̃�r ,λ0

〉

= 1

p
κr+1

2

p∑
λ0...λr=1

δλ0,λ1

(
r−1∏
i=1

δλi ,λi+1

)
δλr ,λ0 = κr+1

2 . (38)

Insertion into (35) then gives us the fully explicit form

R(t, t ′) = κ2

{
δ(t − t ′) + lim

δN→0

1

δN

∑
r>0

(−δN)rκr
2

∑
�1...�r−1

G(�0, �1) . . . G(�r−1, �r )

}

= κ2

{
δ(t − t ′) +

∑
r>0

(−κ2)
rGr(t, t ′)

}

= κ2(11 + κ2G)−1(t, t ′). (39)

This result for inner product MGs depends on the function f [.] and the variance S only via
a single parameter κ2 = ∫

Dz f 2[Sz], and reduces to the corresponding expression found
earlier [9] for look-up table MGs with fake histories when κ2 = 1.

4.2. The effective noise covariance kernel �

We now turn to the function (33). This is needed in (36) but only for time combinations with
�0 > �1 > · · · > �r and �′

0 > �′
1 > · · · > �′

r ′ . Again we first group together the various terms
that have identical time labels, and we also introduce two auxiliary summation indices λ that
allow us to separate the terms with times of the type {�i} from those of the type {�′

j } in a clean
way:

�̃r+r ′+2(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = 1

p

p∑
λ0...λr=1

p∑
λ′

1...λ
′
r′+1

=1

〈
Z̃�0,λ0Z̃�′

0,λ0Z̃�r ,λ
′
r′+1

Z̃�′
r′ ,λ

′
r′+1

×
[

r∏
i=1

Z̃�i−1,λi
Z̃�i ,λi

][
r ′∏

j=1

Z̃�′
j−1,λ

′
j
Z̃�′

j ,λ
′
j

]〉
{Z}

= 1

p

p∑
λ0...λr+1=1

p∑
λ′

0...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

δλ′
0,λ0

〈
Z̃�0,λ0Z̃�′

0,λ
′
0
Z̃�r ,λr+1Z̃�′

r′ ,λ
′
r′+1

×
[

r∏
i=1

Z̃�i−1,λi
Z̃�i ,λi

][
r ′∏

j=1

Z̃�′
j−1,λ

′
j
Z̃�′

j ,λ
′
j

]〉
{Z}

= 1

p

p∑
λ0...λr+1=1

p∑
λ′

0...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

δλ′
0,λ0

×
〈[

r∏
i=0

Z̃�i ,λi
Z̃�i ,λi+1

][
r ′∏

j=0

Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

]〉
{Z}

. (40)

Due to the time ordering relations of the problem, there can never be time coincidences
amongst members of the set {�0, . . . , �r}, nor amongst members of the set {�′

0, . . . , �
′
r ′ }. Thus

the various factors within the first pair of round brackets
(∏r

i=0 . . .
)

in (40) are all independent,

and so are those within the second pair of round brackets
(∏r ′

j=0 . . .
)
. The only possible time

9
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coincidences are pairings between un-primed times {�i} and primed times {�′
j }. Thus we have

to consider the following cases:

• If there are no time coincidences, i.e. �i �= �′
j for all (i, j), the evaluation of (40) proceeds

similarly to that of the previous functions �r+1(. . .):

�̃r+r ′+2(�0, . . . , �r; �′
0, . . . , �

′
r ′)

= 1

p
κr+r ′+2

2

p∑
λ0...λr+1=1

p∑
λ′

0...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

δλ′
0,λ0

[
r∏

i=0

δλi ,λi+1

][
r ′∏

j=0

δλ′
j ,λ

′
j+1

]

= 1

p
κr+r ′+2

2

p∑
λ0=1

p∑
λ′

0=1

δλ′
0,λ0 = κr+r ′+2

2 (41)

• Now consider the effect of a time pairing, where �i = �′
j (note: there can be multiple

pairings, but the number of coinciding times is two at most, due to the built-in time
ordering). The contribution of the Gaussian averages with times (�i, �

′
j ) to the sum∑

λ0...λr+1

∑
λ′

0...λ
′
r′+1

in (40), which in the absence of pairing equalled simply

no pairing :
〈
Z̃�i ,λi

Z̃�i ,λi+1Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

〉 = 〈Z̃�i ,λi
Z̃�i ,λi+1

〉〈
Z̃�′

j ,λ
′
j
Z̃�′

j ,λ
′
j+1

〉
= κ2

2 δλi ,λi+1δλ′
j ,λ

′
j+1

now becomes:

�i = �′
j :

〈
Z̃�i ,λi

Z̃�i ,λi+1Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

〉 = (κ4 − 3κ2
2

)
δλi ,λi+1δλ′

j ,λ
′
j+1

δλi ,λ
′
j

+ κ2
2

[
δλi ,λi+1δλ′

j ,λ
′
j+1

+ δλi ,λ
′
j
δλi+1,λ

′
j+1

+ δλi ,λ
′
j+1

δλi+1,λ
′
j

]
The effect of time pairings can be represented diagrammatically; see figure 1.

We now make the crucial observation that in expression (36) any time pairing would
inevitably generate a ‘bare’ factor δN that would no longer be absorbed into an integration
via
∑

�k
δN → ∫

dtk . Hence the only contributions to �̃r+r ′+2 to survive the limit δN → 0
in (36) are those where each time pairing also generates an extra O(p) factor to compensate
for the emerging δN . Let us inspect the various diagrams, see figure 1 (and the higher order
versions generated due to multiple time coincidences) and their contributions to �̃r+r ′+2. Each
connected diagram implies that ultimately in the summation

∑
λ0...λr

∑
λ′

0...λ
′
r′

we are restricted

to λ0 = λ1 = . . . λr = λ′
0 = · · · = λ′

r ′ . This leaves a sum over λ0 only, and a final
O(1) contribution to �̃r+r ′+2. On the other hand, in the case of a disconnected diagram,
each internally connected sub-diagram will give an O(p) factor. Here the order of the final
contribution to �̃r+r ′+2 is pL where L denotes the total number of time pairings that gave
rise to the diagram cuts. Hence the only relevant diagrams in figure 1 are the top one (when
there are no pairings) and the third from the top (when there are pairings, but where these
also generate compensating O(p) factors), including the higher order diagrams with multiple
vertical connections (in the case of multiple time pairings).

It follows, in combination with the contribution coming from the unpaired terms and
from each possible time pairing as calculated earlier, and taking into account the crucial time
orderings in (36), that

�̃r+r ′+2(�0, . . . , �r ; �′
0, · · · , �′

r ′) = κr+r ′+2
2

r∏
i=1

r ′∏
j=1

[
1 + δ�i ,�

′
j
(p + O(p0)

]

= κr+r ′+2
2

r∏
i=1

r ′∏
j=1

[
1 +

η̃

2δN

δ�i ,�
′
j
(1 + O(δN)

]
. (42)
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0 1 i i + 1 r r + 1

0 1 j j + 1 r r + 1

0 1 i i + 1 r r + 1

0 1 j j + 1 r r + 1

0 1 i i + 1 r r + 1

0 1 j j + 1 r r + 1

0 1 i i + 1 r r + 1

0 1 j j + 1 r r + 1

no pairings: δλi ,λi+1 δλj ,λj+1

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj+1

δλi+1 ,λj

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj

δλi+1 ,λj+1

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj

δλi ,λi+1 δλj ,λj+1

Figure 1. Diagrammatical representation of the different contributions of the Gaussian averages
to the function �̃r+r ′+2. Each label i ∈ {0, . . . , r + 1} and each label j ∈ {0, . . . , r ′ + 1} is drawn as
a distinct vertex of a graph. Each factor δλi ,λ

′
j

is drawn as a line segment connecting the vertices i

and j . Top graph: the case where there are no time coincidences. Bottom three graphs: the three
different new contributions that are generated by the occurrence of a time pairing where �i = �′

j .

Insertion into (36) gives

�(t0, t
′
0) = κ2

2

∑
r,r ′�0

(−κ2)
r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× [1 + C(tr , t
′
r ′)]G(t0, t1) . . . G(tr−1, tr )G(t ′0, t

′
1) . . . G(t ′r ′−1, t

′
r ′). (43)

We see again, as with the retarded self-interaction kernel R, that also this result for inner
product MGs reduces to the corresponding expression found earlier [9] for look-up table MGs
with fake histories when κ2 = 1.

4.3. Summary, TTI stationary state and phase diagram

The full and closed dynamical equations for the inner product MGs with inconsistent fake
market information are thus found to be given by

C(t, t ′) = 〈σ [q(t)]σ [q(t ′)]〉 G(t, t ′) = δ

δθ(t ′)
〈σ [q(t)]〉. (44)

Averages are defined with respect to the effective single agent process with a retarded self-
interaction and an effective zero-average Gaussian noise η(t):

d

dt
q(t) = θ(t) − ακ2

∫ t

0
dt ′(11 + κ2G)−1(t, t ′)σ [q(t ′)] +

√
αη(t) (45)

〈η(t0)η(t ′0)〉 = κ2
2

∑
r,r ′�0

(−κ2)
r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× [1 + C(tr , t
′
r ′)]G(t0, t1) . . . G(tr−1, tr )G(t ′0, t

′
1) . . . G(t ′r ′−1, t

′
r ′). (46)

11
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We notice that the role of the remaining parameter κ2 is to define a characteristic time scale
for the process, and that apart from this our equations reduce in the limit of infinitesimal
perturbation fields exactly to the theory of the fake history look-up table MGs as derived in
[9]. To see this we re-define G(t, t ′) = κ−1

2 Ĝ(t, t ′), θ(t) = κ2 ˆθ(t) and η(t) = κ2 ˆη(t), and
find

C(t, t ′) = 〈σ [q(t)]σ [q(t ′)]〉 Ĝ(t, t ′) = δ

θ̂(t ′)
〈σ [q(t)]〉 (47)

1

κ2

d

dt
q(t) = θ̂ (t) − α

∫ t

0
dt ′(11 + Ĝ)−1(t, t ′)σ [q(t ′)] +

√
αη̂(t) (48)

〈η̂(t0)η̂(t ′0)〉 =
∑

r,r ′�0

(−1)r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× [1 + C(tr , t
′
r ′)]Ĝ(t0, t1) . . . Ĝ(tr−1, tr )Ĝ(t ′0, t

′
1) . . . Ĝ(t ′r ′−1, t

′
r ′). (49)

It will no longer come as a surprise that upon using (39), (43) to calculate in time-translation
invariant stationary states the persistent order parameters χR = ∫ dtR(t) and S2

0 = �(∞), we
find that the only difference between the stationary state order parameter equations of look-up
table MGs and the present inner product MGs is a re-scaling of the static susceptibility χ :

u = σ [∞]
√

α/2(1 + c) (50)

φ = 1 − Erf[u] (51)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
(52)

χ = Erf[u]/κ2(α − Erf[u]). (53)

Since phase transitions in the present type of MGs are defined by a divergence of χ , we
conclude that not only the values of the static observables {φ, c} but also the phase diagrams
of the two fake history MG model families are identical.

4.4. The volatility

Finally we calculate the volatility. Since the average overall bid is zero, the volatility is here
defined by σ 2 = limt→∞ limδN →0 〈〈A2(�)〉〉{A,Z}|�=t/δN

. Inserting (34) into the definition of
σ , with Ae → 0, gives

σ 2 = lim
t→∞ lim

δN→0

{ ∑
r,r ′�0

(−δN)r+r ′ ∑
�0...�r

G(�0, �1) . . . G(�r−1, �r )

×
∑

�′
0...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)δ�,�0δ�,�′

0
pr+r ′

〈〈
〈φ�r

φ�′
r′
〉{φ|A,Z}

×
[

r∏
i=1

W [�i−1, �i; {A,Z}]
][

r ′∏
j=1

W [�′
j−1, �

′
j ; {A,Z}]

]〉〉
{A,Z}

}∣∣∣∣∣
�= t

δN

= lim
t→∞ lim

δN →0

{
1

2

∑
r,r ′�0

(−δN)r+r ′ ∑
�0...�r

G(�0, �1) . . . G(�r−1, �r)

12



J. Phys. A: Math. Theor. 41 (2008) 324005 A C C Coolen and N Shayeghi

×
∑

�′
0...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)[1 + C(�r, �

′
r ′)]δ�,�0δ�,�′

0

× ˜̃�r+r ′+1(�0, . . . , �r ; �′
0, . . . , �

′
r ′)

}∣∣∣∣∣
�=t/δN

(54)

with
˜̃�r+r ′+1(�0, . . . , �r ; �′

0, . . . , �
′
r ′)

= pr+r ′
〈〈

W [�r , �
′
r ′ ; {A,Z}]

[
r∏

i=1

W [�i−1, �i; {A,Z}]
][

r ′∏
j=1

W [�′
j−1, �

′
j ; {A,Z}]

]〉〉
{A,Z}

.

(55)

We need this function (55) only for times with �0 > �1 > · · · > �r and �′
0 > �′

1 > · · · > �′
r ′ .

For the case of inner product MG, where W [�, �′; {A,Z}] = p−1∑p

λ=1 Z̃�,λZ̃�′,λ, its evaluation
is very similar to that of (33):

˜̃�r+r ′+1(�0, · · · , �r ; �′
0, . . . , �

′
r ′) = 1

p

p∑
λ1...λr+1=1

p∑
λ′

1...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

×
〈
Z̃�0,λ1Z̃�′

0,λ
′
1

[
r∏

i=1

Z̃�i ,λi
Z̃�i ,λi+1

][
r ′∏

j=1

Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

]〉
{Z}

(56)

Due to the time ordering, the factor Z̃�0,λ1Z̃�′
0,λ

′
1

is statistically independent of all others, so
that

˜̃�r+r ′+1(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = κ2

p

p∑
λ1...λr+1=1

p∑
λ′

1...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

×
〈[

r∏
i=1

Z̃�i ,λi
Z̃�i ,λi+1

][
r ′∏

j=1

Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

]〉
{Z}

. (57)

Again we inspect the effect of time pairings:

• If there are no time coincidences, i.e. �i �= �′
j for all (i, j), we simply find

˜̃�r+r ′+1(�0, . . . , �r; �′
0, . . . , �

′
r ′)

= 1

p
κr+r ′+1

2

p∑
λ1...λr+1=1

p∑
λ′

1...λ
′
r′+1

=1

δλr+1,λ
′
r′+1

[
r∏

i=1

δλi ,λi+1

][
r ′∏

j=1

δλ′
j ,λ

′
j+1

]

= 1

p
κr+r ′+1

2

p∑
λ1=1

p∑
λ′

1=1

δλ′
1,λ1 = κr+r ′+1

2 (58)

• The effect of a time pairing �i = �′
j on the contribution of the Gaussian averages with

times (�i, �
′
j ) is exactly as before:

no pairing :
〈
Z̃�i ,λi

Z̃�i ,λi+1Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

〉 = 〈Z̃�i ,λi
Z̃�i ,λi+1

〉〈
Z̃�′

j ,λ
′
j
Z̃�′

j ,λ
′
j+1

〉
= κ2

2 δλi ,λi+1δλ′
j ,λ

′
j+1

�i = �′
j :

〈
Z̃�i ,λi

Z̃�i ,λi+1Z̃�′
j ,λ

′
j
Z̃�′

j ,λ
′
j+1

〉 = (κ4 − 3κ2
2

)
δλi ,λi+1δλ′

j ,λ
′
j+1

δλi ,λ
′
j

+ κ2
2

(
δλi ,λi+1δλ′

j ,λ
′
j+1

+ δλi ,λ
′
j
δλi+1,λ

′
j+1

+ δλi ,λ
′
j+1

δλi+1,λ
′
j

)
13
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1 2 i i + 1 r r + 1

1 2 j j + 1 r r + 1

1 2 i i + 1 r r + 1

1 2 j j + 1 r r + 1

1 2 i i + 1 r r + 1

1 2 j j + 1 r r + 1

1 2 i i + 1 r r + 1

1 2 j j + 1 r r + 1

no pairings: δλi ,λi+1 δλj ,λj+1

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj+1

δλi+1 ,λj

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj

δλi+1 ,λj+1

i = j : δλi ,λi+1 δλj ,λj+1
→ δλi ,λj

δλi ,λi+1 δλj ,λj+1

Figure 2. Diagrammatical representation of the different contributions of the Gaussian averages
to the function ˜̃�r+r ′+1. Each label i ∈ {1, . . . , r + 1} and each label j ∈ {1, . . . , r ′ + 1} is drawn as
a distinct vertex of a graph. Each factor δλi ,λ

′
j

is drawn as a line segment connecting the vertices i

and j . Top graph: the case where there are no time coincidences. Bottom three graphs: the three
different new contributions that are generated by the occurrence of a time pairing where �i = �′

j .

The corresponding diagrammatic representation is shown in figure 2. Since each time
pairing will have to be compensated by an O(p) factor to retain relevance in the limit δN → 0,
the only relevant diagrams in figure 2 are again the top one (no pairings) and the third from the
top (a time pairing with vertical connections that causes a diagram cut), including the higher
order diagrams with multiple vertical connections (in the case of multiple time pairings). We
conclude that

˜̃�r+r ′+1(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = κr+r ′+1

2

r∏
i=1

r ′∏
j=1

[
1 + δ�i ,�

′
j
(p + O(p0)

]

= κr+r ′+1
2

r∏
i=1

r ′∏
j=1

[
1 +

η̃

2δN

δ�i ,�
′
j
(1 + O(δN)

]
(59)

and hence

σ 2 = 1

2
κ2 lim

t→∞

∑
r,r ′�0

(−κ2)
r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× [1 + C(tr , t
′
r ′)]G(t, t1)G(t1, t2) . . . G(tr−1, tr )G(t, t ′1)G(t ′1, t

′
2) . . . G(t ′r ′−1, t

′
r ′)

= lim
τ→∞

κ2

2τ

∫ τ

0
dt
∑

r,r ′�0

(−κ2)
r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× G(t, t1)G(t1, t2) . . . G(tr−1, tr )G(t, t ′1)G(t ′1, t
′
2) . . . G(t ′r ′−1, t

′
r ′)

× [1 + C(tr , t
′
r ′)]. (60)
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Comparison with the corresponding expression in [9] for look-up table MGs shows that the only
difference is in the various occurrences of κ2. If we implement the transformation that maps the
effective single agent exactly onto that of the look-up-table models, viz. G(t, t ′) = κ−1

2 Ĝ(t, t ′),
we find that the inner-product volatility differs from that of the look-up table models by a factor
κ2:

σ 2 = lim
τ→∞

κ2

2τ

∫ τ

0
dt
∑

r,r ′�0

(−1)r+r ′
∫ ∞

0
dt1 . . . dtr dt ′1 . . . dt ′r ′

r∏
i=1

r ′∏
j=1

[
1 +

1

2
η̃δ(ti − t ′j )

]

× Ĝ(t, t1)Ĝ(t1, t2) . . . Ĝ(tr−1, tr )Ĝ(t, t ′1)Ĝ(t ′1, t
′
2) . . . Ĝ(t ′r ′−1, t

′
r ′)

× [1 + C(tr , t
′
r ′)]. (61)

5. Inner product MGs with real market history

The previous cases could be solved exactly and in full, due to the absence of real history.
We now turn to the more demanding situation where ζ < 1 in definition (26), so that the
information vector truly depends on the past market history. Here it will turn out advantageous
to define the stochastic and time dependent symmetric p × p matrices B(�) with entries

Bλλ′(�) = Fλ[�,A,Z]Fλ′ [�,A,Z] (62)

with Fλ[. . .] as defined in (3). This allows us to write the relevant functions
�r+1(. . .), �̃r+r ′+2(. . .) and ˜̃�r+r ′+1(. . .) (that occur in the kernels R and � and in the volatility)
as averages over a trace:

�r+1(�0, . . . , �r ) = 1

p
Tr〈〈B(�0)B(�1) . . . B(�r)〉〉{A,Z} (63)

�̃r+r ′+2(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = 1

p
Tr〈〈B(�0)B(�1) . . . B(�r)B(�′

r ′) . . . B(�′
1)B(�′

0)〉〉{A,Z}

(64)

˜̃�r+r ′+1(�0, �1 . . . , �r ; �0, �
′
1, . . . , �

′
r ′) = 1

p
Tr〈〈B(�0)B(�1) . . . B(�r)B(�′

r ′) . . . B(�′
1)〉〉{A,Z}

(65)

These expressions are of course still exact, but not easy to evaluate.

5.1. Short history correlation times in TTI stationary states

We now make an approximation for the TTI stationary state solution in the spirit of the short
history correlation times ansatz made in [11] for look-up table MGs; in fact we will find
below that for look-up table MGs the two are identical. In working out our expressions for
χR = ∫ dtR(t),�(∞) = limτ→∞ �(t + τ, t) and the volatility σ 2 we will replace the kernels
(63), (64), (65) by the values they will take for times which are sufficiently widely separated
to de-correlate the random matrices B(�), i.e. we replace

r∏
i=1

B(�i) → Br (A,Z) B(A,Z) = lim
L→∞

1

L

∑
��L

B(�). (66)

This is equivalent to assuming ergodicity in the space of the bid history strings on time-scales
of O(N) discrete iteration steps of the MG. For TTI states it allows us to express everything in
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terms of the average eigenvalue distribution �(µ) of the now time independent random p × p

matrix B(A,Z):

�r+1(�0, . . . , �r ) = 1

p
Tr〈〈Br+1(A,Z)〉〉{A,Z} =

∫ ∞

0
dµ�(µ)µr+1. (67)

�̃r+r ′+2(�0, . . . , �r ; �′
0, . . . , �

′
r ′) = 1

p
Tr〈〈Br+r ′+2(A,Z)〉〉{A,Z} =

∫ ∞

0
dµ�(µ)µr+r ′+2 (68)

˜̃�r+r ′+1(�0, �1 . . . , �r ; �0, �
′
1, . . . , �

′
r ′) = 1

p
Tr〈〈Br+r ′+1(A,Z)〉〉{A,Z} =

∫ ∞

0
dµ�(µ)µr+r ′+1.

(69)

Since B(A,Z) is non-negative definite one always has µ � 0. Insertion of (67), (68), (69)
into expressions (35), (36) for the kernels R and � followed by appropriate integration and
re-summation of the series leads us to the following expressions for χR and S2

0 = �(∞):

χR =
∫ ∞

0
dµ�(µ)

µ

1 + µχ
S2

0 = (1 + c)

∫ ∞

0
dµ�(µ)

µ2

(1 + µχ)2
. (70)

The effects of having real memory are concentrated fully in the eigenvalue distribution �(µ).
Once this distribution has been calculated in terms of {c, φ, χ}, the persistent order parameters
of the MG will be given by a closed set of equations. Upon introducing a convenient parameter
ω ∈ [0, 1] via

ω =
∫

dµ�(µ)µχ/(1 + µχ)√∫
dµ�(µ)[µχ/(1 + µχ)]2

. (71)

our closed order parameter equations take the form

u = ωσ [∞]
√

α√
2(1 + c)

,
1 − φ

α
=
∫ ∞

0

dµ�(µ)

1 + (µχ)−1
, φ = 1 − Erf[u] (72)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
. (73)

From this we can already extract several results, and explain observations made in the past for
MG types other than look-up table ones on the basis of numerical simulations:

• Irrespective of the extent to which the histories are real, and irrespective of the nature of
the function f [A], the ergodicity-breaking phase transition point marked by a divergence
of χ occurs always at the value αc(T ) that was found originally for fake history look-up
table MG models [5–8], as solved from the closed set

u = σ [∞]
√

α/2(1 + c), Erf[u] = α, (74)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
(75)

• Equations (71)–(73) return to those derived earlier for inconsistent random histories when
ω = 1, whereas real histories affect the persistent observables as soon as ω < 1. For
finite χ we thus arrive at the conclusion, via (71), that our observables are affected by
having real histories if and only if �(µ) is not a δ-distribution. A nonzero width of �(µ)

is the fingerprint of real histories influencing the behaviour of the MG.
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We note that the combined equations (70)–(73) are identical to those found for the look-
up table MGs with true market histories [11], with the eigenvalue distribution �(µ) taking
over the role of the relative history frequency distribution in [11]. This can be understood.
Our choice of notation allows us to apply the present derivation also to the look-up table
models, simply by making in (62) the substitutions λ ∈ {1, . . . , p} → λ ∈ {−1, 1}M
and Fλ[�,A,Z] → √

pδλ,λ(�,A,Z), where λ(�, A,Z) is the history string (potentially partly
fake) as observed by the agents at step �. In look-up table MGs one would therefore have
Bλλ′(�) = pδλ,λ(�,A,Z)δλ′,λ(�,A,Z) and hence

Bλλ′(A,Z) = pδλλ′ lim
L→∞

1

L

∑
��L

δλ,λ(�,A,Z) = pδλλ′πλ(A,Z) (76)

Here πλ(A,Z) denotes the stationary state frequency of occurrence of history string λ. Since
this matrix B(A,Z) is of a diagonal form, its eigenvalues are simply the diagonal entries
pπλ(A,Z), and the asymptotic eigenvalue distribution becomes

�(µ) = lim
p→∞

1

p

∑
λ

〈〈δ [µ − pπλ(A,Z)]〉〉{A,Z} (77)

Thus, for look-up table MGs the eigenvalue distribution �(µ) is indeed identical to the relative
history frequency distribution of [11].

The question of whether and to what extent having real as opposed to fake market histories
affects the MG thus boils down to assessing the shape of the eigenvalue distribution �(µ).
For look-up table MGs this distribution is known to become nontrivial above the critical point
[10, 11]. Numerical simulations show that the same is true for inner product MGs, so also
here models with real history will behave differently from those with fake histories.

5.2. Calculation of eigenvalue spectrum �(µ) for weakly correlated bids

In the remainder of this paper we will deal exclusively with the inner product version of the
MG with real history and inconsistent bid noise, i.e. from now on we will have

Bλλ′(A,Z) = 1

L

∑
��L

f [(1 − ζ )A(� − λ) + ζZ(�, λ)]f [(1 − ζ )A(� − λ′) + ζZ(�, λ′)]. (78)

where 〈Z(�, λ)Z(�′, λ′)〉 = S2δ��′δλλ′ , and where we focus on the regime where 1 	 p 	 L.
We try to understand the origin of the nontrivial eigenvalue distribution �(µ) in inner product
MGs and its impact on the order parameter equations. Numerical simulations show that, even
when the histories are real, the bid correlations are still very weak, see e.g. figure 3; this we
will exploit in our analysis. The remaining complications arise from the fact that, although the
matrix B(A,Z) is an average over a diverging number of at most weakly correlated variables,
the number of entries of B(A,Z) also diverges. To prepare the stage we first write the
time-translation invariant bid covariances as �(λ) = 〈A(�)A(� + λ)〉{A,Z}, and introduce the
short-hands

Q0 =
∫

Dz f 2[z
√

(1 − ζ )2σ 2 + ζ 2S2] (79)

Q1 =
∫

Dy

[∫
Dz f [(1 − ζ )σy + ζSz]

]2

. (80)

with σ 2 = lim�→∞ 〈〈A2(�)〉〉{A,Z} = �(0), and 0 � Q1 � Q0. As for the look-up table MGs,
one expects also for inner product MGs the distribution �(µ) to be well-defined as p → ∞,
since

∫
dµ�(µ)µ = p−1∑

λ�p 〈〈Bλλ(A,Z)〉〉A,Z = Q0.
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Figure 3. Time-translation invariant bid covariances �(�) = 〈A(t + �)A(t)〉 of inner product MGs
(78) measured in numerical simulations, with N = 1025 and α = 2. Covariances are calculated
over 200.N time steps, following equilibration. Top row: f [A] = A, with ζ ∈ {0, 1

2 , 1}; bottom
row: f [A] = sgn(A), with ζ ∈ {0, 1

2 , 1}. The left pictures refer to strictly real histories, the right
pictures to strictly fake histories, with the middle ones representing a mixing of the two. These data
are representative of the typical behaviour throughout the ergodic regime. The bid correlations are
always seen to be weak, which justifies our approximate calculation of the spectrum �(µ). We also
observe qualitative differences between f [A] = A and f [A] = sgn(A), e.g. vanishing volatility
as ζ → 0 (strictly real histories) for f [A] = A, which will be addressed later.

In the absence of bid correlations, as for fully fake histories, B(A,Z) will be self-
averaging for L → ∞ and fixed p; this implies (due to the time-translation invariance of the bid
correlations) that B will be of the Toeplitz form. One expects time translation invariance to hold
also if the correlations between bids at different times are sufficiently small, and also B(A,Z) to
remain self-averaging at least with respect to the inconsistent noise variables, although possibly
not with respect to the bids. Here we explore the consequences for the spectrum �(µ) of
assuming the bid correlations �(λ) for λ �= 0 to be small, and of taking B(A,Z) to be Toeplitz
and self-averaging with respect to the {Z(�, λ)}, i.e. Bλλ′(A,Z) = B(λ−λ′|A). If �(λ) decays
to zero or to small random values sufficiently fast, we may continue B(A)L-periodically, so
that it becomes a circular Toeplitz matrix. Its L eigenvalues µr(r = 0, . . . , L − 1) will now
be given by

µr =
L−1∑
�′=0

B(λ|A) e−2π i�′r/L = Q0 + Sr(A) (81)

with Q0 as given in (79) and, upon replacing
∑

��L by
∑

�<L in (78) (which is allowed since
L → ∞):

Sr(A) = 1

L

L−1∑
��′=1

e−2π i�′r/L

[∫
Dz f [(1 − ζ )A(� − �′) + ζSz]

][∫
Dz f [(1 − ζ )A(�) + ζSz]

]
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= 1√
L

L−1∑
�=1

∫
Dz f [(1 − ζ )A(�) + ζSz] e−2π i�r/L

× 1√
L

�−1∑
�′=�−L+1

∫
Dz f [(1 − ζ )A(�′) + ζSz] e2π i�′r/L. (82)

The first and second line are both sums over a large number of nearly independent random
variables. If the correlations between the bids at different times are sufficiently small, we
may take the second sum to be independent of �, which allows us to put � = L in this term,
provided we correct for the inappropriate generation in doing so of terms where the bids
involve identical times (i.e. where � = �′, as such terms were absent initially):

Sr(A) = |zr(A)|2 − Q1 (83)

zr(A) = 1√
L

L−1∑
�=1

∫
Dz f [(1 − ζ )A(�) + ζSz] e2π i�r/L. (84)

Clearly zL−r = zr . Given our assumption of weakly correlated bids and given that f [A] is by
definition anti-symmetric, the L complex random variables zr (where r = 0 . . . L− 1) will for
L → ∞ acquire zero-average Gaussian statistics (central limit theorem), with

〈zr(A)zr ′(A)〉 = Q1

L − 1

L−1∑
�=1

e2π i�(r+r ′)/L = Q1L

L − 1
δr+r ′,modL − Q1

L − 1
(85)

〈zr(A)zr ′(A)〉 = Q1

L − 1

L−1∑
�=1

e−2π i�(r+r ′)/L = Q1L

L − 1
δr+r ′,modL − Q1

L − 1
(86)

〈zr(A)zr ′(A)〉 = Q1

L − 1

L−1∑
�=1

e2π i�(r−r ′)/L =
(

Q1 +
Q1

L − 1

)
δr−r ′,modL − Q1

L − 1
(87)

If the spectrum is well-defined as L → ∞, we may take L to be odd and write the
spectrum as an average over {z1, . . . , zL/2−1/2}, using zL−r = zr to deal with the remaining
{zL/2−1/2, . . . , zL−1}. We may disregard r = 0, since it gives only a vanishing contribution
to the spectrum. The remaining L−1

2 complex Gaussian variables are written in terms of their
real and imaginary parts as zr = xr + iyr , for which one finds

〈xrxr ′ 〉 = Q1L

2(L − 1)
δrr ′ − Q1

L − 1
, 〈yryr ′ 〉 = Q1L

2(L − 1)
δrr ′ , 〈xryr ′ 〉 = 0 (88)

If for L → ∞ we are allowed to neglect the O(1/L) correlations between the Gaussian xr ,
we may use the law of large numbers and write the spectrum �(µ) as an average over their
distribution, giving (with |zr |2 = x2

r + y2
r ):

�(µ) =
∫

DuDv δ

[
µ − Q0 + Q1 − 1

2
Q1(u

2 + v2)

]
= Q−1

1 θ [µ − Q0 + Q1] e−(µ−Q0+Q1)/Q1 . (89)

It is encouraging to see that this simple expression passes the two tests at our disposal. Firstly,
it obeys the exact equation

∫
dµµ�(µ) = Q0. Second, since limζ→1 Q1 = 0 one always has

limζ→1 �(µ) = δ[µ − Q0], so in the fake history limit it leads us correctly to the standard
stationary state equations of the fake history MGs. Let us inspect what our general results imply
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for the two canonical choices for f [A]. For f [A] = A one obtains Q0 = (1 − ζ )2σ 2 + ζ 2S2

and Q1 = (1 − ζ )2σ 2, so that

�(µ) = θ [µ − ζ 2S2]

(1 − ζ )2σ 2
e−(µ−ζ 2S2)/(1−ζ )2σ 2

. (90)

Fully real history would give limζ→0 �(µ) = θ [µ]σ−2 e−µ/σ 2
. For f [A] = sgn(A), in

contrast, one has Q0 = 1 and

Q1 =
∫

Dy Erf2

[
(1 − ζ )σy

ζS
√

2

]
= 4

π
arctan

⎡
⎣
√

1 + 2
(1 − ζ )2σ 2

ζ 2S2

⎤
⎦− 1 (91)

and so

�(µ) =
θ
[
µ − 2 + 4

π
arctan

[√
1 + 2 (1−ζ )2σ 2

ζ 2S2

]]
4
π

arctan
[√

1 + 2 (1−ζ )2σ 2

ζ 2S2

]− 1

× e
−
[
µ−2+ 4

π
arctan

[√
1+2 (1−ζ )2σ2

ζ2S2

]]/[
4
π

arctan
[√

1+2 (1−ζ )2σ2

ζ2S2

]
−1
]
.

(92)

Here the limit of fully real history gives limζ→0 Q1 = 1 and limζ→0 �(µ) = θ [µ] e−µ. The
persistent order parameter equations (71), (72), (73) do not involve the volatility, but it turns
out that we generally need to know the volatility in order to use (92) and (90) for closure, unless
ζ ∈ {0, 1}, i.e. unless the histories are strictly real or strictly fake. In figure 4 we compare
the above predictions with the eigenvalue spectra as measured in numerical simulations of the
inner product MG with f [A] = sgn(A), where (for ζ �∈ {0, 1}) we inserted in our formulae the
value of σ as measured. Given the severe finite size and finite time effects in such simulations,
the agreement is surprisingly acceptable. The remaining deviations are very likely to be finite
size effects. Having a finite value of L in measurements removes the self-averaging of the
matrix Bλλ′(A,Z) with respect to the noise variables Z(�, λ), which our L → ∞ calculation
assumed (and thereby deforms the matrix in the direction of the random matrices as studied
in e.g. [19–21]), and furthermore we have in these simulation experiments only been able to
sample in equilibrium states matrices of limited dimension p ∈ {1025, 2049}. Both these
limitations result in a smoothening of the spectrum as measured in practice, compared to
the asymptotic shape. The effect of retaining the O(L−1) correlations between the xr in the
above calculation turns out to be an order L−1 reduction of the width of �(µ); furthermore,
when including O(L−1) terms finds that the condition

∫
dµµ�(µ) = Q0 is violated at order

L−1, which implies (as expected) that in that order we can no longer treat the zr as Gaussian
variables.

We note that the above reasoning would also apply for �(λ) = σ 2δλ0, a situation
indistinguishable from replacing the actual bids in the history signal by consistent fake
information, so we must conclude that the origin of nontrivial eigenvalue distributions �(µ)

is the consistency of the histories (although of course the precise shape of �(µ) will depend
on whether or not the histories are real). We note also that allowing for B(A,Z) not being
self-averaging with respect to the bids has been crucial in our argument. Had we set the bid
correlations to zero and averaged B(A,Z) over the bid process, we would have found the
trivial spectrum �(µ) = δ[µ − Q0].
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Figure 4. Comparison between eigenvalue spectra �(µ) of the stochastic matrix B(A, Z) of inner
product MGs (78) as measured in numerical simulations (histograms, for N = 1025) versus the
approximate prediction (92) based on assuming weak bid correlations, for f [A] = sgn(A). Top
row: α = 1, with ζ ∈ {0, 1

2 , 1}; bottom row: α = 2, with ζ ∈ {0, 1
2 , 1}. All matrix entries in

simulations were calculated over L = 400 · N time steps, following equilibration. For ζ = 1
2 we

used in (92) the value for σ as measured in the simulation; for ζ ∈ {0, 1} the volatility drops out of
the formula. Note that there are at least two obvious sources of deviation between prediction and
experiment (apart from the crude approximation used in the theory): finite size effects (N = 1025
rather than N → ∞) and finite observation time effects (L � 400 ·N rather than L → ∞). Given
these limitations, the qualitative agreement between prediction and experiment is surprisingly
acceptable. Spectra of random matrices are indeed known to have finite size effects which decay
much slower than N−1/2, however, we will find later that at the level of the MG’s conventional
order parameters the finite size deviations between theory and simulations are of the expected order
N−1/2.

5.3. The volatility

We turn to the calculation of the volatility, which measures the fluctuations in the bids A(�).
It turns out that these bids are always Gaussian random variables, see figure 5, which is not
obvious since the bids obey a generally nonlinear stochastic equation. The first step is to
substitute (65) (obtained upon assuming short history correlation times in ergodic stationary
states) into the as yet exact formula (54) for the volatility, giving

σ 2 = lim
t→∞ lim

δN→0

{
1

2

∑
r,r ′�0

(−δN)r+r ′
∫ ∞

0
dµ�(µ)µr+r ′+1

∑
�0...�r

G(�0, �1) . . . G(�r−1, �r )

×
∑

�′
0...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)[1 + C(�r, �

′
r ′)]δ�,�0δ�,�′

0

}∣∣∣∣∣
�=t/δN

. (93)
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Figure 5. The bid distribution P(A) = L−1∑
��L〈δ[A − A(�)]〉 of inner product MGs (78),

as measured in numerical simulations (histograms), with N = 1025 and α = 2. Statistics are
calculated over 200.N time steps, following equilibration. The solid lines (barely visible, since
they are virtually coinciding with the histograms) are Gaussian distributions with average and
variance identical to those observed, for comparison. Top row: f [A] = A, with ζ ∈ {0, 1

2 , 1};
bottom row: f [A] = sgn(A), with ζ ∈ {0, 1

2 , 1}. The left pictures refer to strictly real histories,
the right pictures to strictly fake histories, with the middle ones representing a mixing of the two.
These data (corresponding to the same experiments as those of figure 3) are representative of
the typical behaviour throughout the ergodic regime. The bids are always indistinguishable from
Gaussian variables.

As always we next have to approximate non-persistent dynamical order parameters by
expressions involving only persistent ones. Following procedures similar to those used in
the past [13] we assume the agent correlation function C(�) to decay very fast, so that we may
replace C(�) → c + δ�0(1 − c). Substitution into (93), followed by carrying out various sums
analytically (using δN

∑
� G(�) = χ ) leads us to the approximation

σ 2 = 1

2
(1 + c)

∫ ∞

0
dµ�(µ)

µ

(1 + µχ)2

+
1

2
(1 − c) lim

t→∞ lim
δN →0

{ ∑
r,r ′�0

(−δN)r+r ′
∫ ∞

0
dµ�(µ)µr+r ′+1

×
∑
�0...�r

G(�0, �1) . . . G(�r−1, �r )
∑

�′
0...�

′
r′

G(�′
0, �

′
1) . . . G(�′

r ′−1, �
′
r ′)δ�r ,�

′
r′
δ�,�0δ�,�′

0

}∣∣∣∣∣
�=t/δN

.

(94)

In the second term we see that, unless r = r ′ = 0 (where δ�r ,�
′
r′

reduces directly to δ�0,�
′
0

=
δ�� = 1), the factor δ�r ,�

′
r′

will always leave us with one residual factor δN that is no longer
compensated by a time summation, resulting in the removal of the corresponding term for
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δN → 0. Hence one retains only

σ 2 = 1

2
(1 + c)

∫ ∞

0
dµ�(µ)

µ

(1 + µχ)2
+

1

2
(1 − c)

∫ ∞

0
dµ�(µ)µ

= 1

2
(1 + c)

∫ ∞

0
dµ�(µ)

µ

(1 + µχ)2
+

1

2
(1 − c)Q0. (95)

For ζ → 1 (strictly inconsistently fake histories), where �(µ) → δ[µ − Q0] and Q0 → κ2,
this expression reduces to the familiar approximation formula known from inner product MGs
(apart from various factors κ2, which appear exactly as predicted by (53) and (61):

lim
ζ→1

σ 2 = κ2

{
1

2

1 + c

(1 + κ2χ)2
+

1

2
(1 − c)

}
(96)

5.4. Compactification of the theory and universality for ζ → 0

The final equations which describe the static limit of our theory, describing time-translation
invariant stationary states, can be compactified further. The simple exponential shape of the
spectrum (89) allows us to express the two relevant averages in (71), (72) in terms of the
exponential integral E1(z) = ∫∞

z
dt t−1 e−t [22], resulting in the following set of coupled

equations for the static order parameters {c, φ, χ}:

ω =
χQ1 − e[1+χ(Q0−Q1)]/χQ1E1

( 1+χ(Q0−Q1)

χQ1

)
√

(χQ1)2 − e[1+χ(Q0−Q1)]/χQ1E1
( 1+χ(Q0−Q1)

χQ1

)
(2χQ1 + 1) + χQ1

1+χ(Q0−Q1)

(97)

u = ωσ [∞]
√

α/
√

2(1 + c) (98)

φ = 1 − Erf[u] (99)

Erf[u] = α

{
1 − 1

χQ1
e[1+χ(Q0−Q1)]/χQ1E1

(
1 + χ(Q0 − Q1)

χQ1

)}
(100)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
. (101)

Equations (97), (98) simply define ω and u as short-hands for complicated functions of
{c, φ, χ}. The volatility and the factors Q0,1 are calculated from

σ 2 = 1 + c

2Q1χ2

{
1 + Q1χ

Q1χ
e[1+χ(Q0−Q1)]/χQ1E1

(
1 + χ(Q0 − Q1)

χQ1

)
− 1

1 + χ(Q0 − Q1)

}

+
1

2
(1 − c)Q0

= 1 + c

2Q1χ2

{
(1 + Q1χ)

α − Erf[u]

α
− 1

1 + χ(Q0 − Q1)

}
+

1

2
(1 − c)Q0

(102)

Q0 =
∫

Dz f 2[z
√

(1 − ζ )2σ 2 + ζ 2S2] (103)
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Q1 =
∫

Dy

[∫
Dz f [(1 − ζ )σy + ζSz]

]2

. (104)

All the details regarding the history definitions (namely the sampling function f [A] and the
degree of ‘fakeness’ ζ ) are fully contained within the factors Q0,1. Our stationary state order
parameter equations are now fully closed, and can be solved numerically.

Of special interest is the limit ζ → 0, where the histories are strictly real. In this limit
one can show that the persistent order parameters {φ, c} become functions of α that no longer
depend on the choice made for f [A]. The reason for this universality is that according to (79),
(80) for ζ → 0 one always has limζ→0 Q1 = limζ→0 Q0 = ∫ Dz f 2[σz]. We may now define
χ̃ = Q0χ and find for ζ → 0 our order parameter equations for {c, φ, χ̃} reducing to

ω = χ̃ − e1/χ̃E1(1/χ̃)√
χ̃2 − e1/χ̃E1(1/χ̃)(2χ̃ + 1) + χ̃

(105)

u = ωσ [∞]
√

α/
√

2(1 + c) (106)

φ = 1 − Erf[u] (107)

Erf[u] = α{1 − χ̃−1 e1/χ̃E1(1/χ̃)} (108)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
. (109)

The values of {c, φ, χ̃} as solved from the above closed set can only depend on the remaining
control parameter α. Since limz→0 z ezE1(z) = 0, the ergodicity-breaking transition point
where χ̃ → ∞, corresponds as always to φ = 1 −α. We would only need to know the choice
made for f [A] if we wished to disentangle χ and Q0 from χ̃ , or to calculate the volatility
which would be the solution of

σ 2 =
{

1 + c

2χ̃2

[
(1 + χ̃ )

α − 1 + φ

α
− 1

]
+

1

2
(1 − c)

}∫
Dz f 2[σz]. (110)

For f [A] = A, however, we have a degenerate situation at ζ = 0. Here we find (110)
converting into

σ 2

{
1 − 1

χ̃2

[
(1 + χ̃)

α − 1 + φ

α
− 1

]}
= 0. (111)

We find that (possibly apart from one degenerate case) that the only stationary solution has
σ = 0, so also Q0 = σ 2 = 0. This, in turn, tells us that χ = ∞ for all α, so the f [A] = A

system is always critical and the ergodicity assumption is always inconsistent.

6. Theory versus numerical simulations of inner product MGs

Below we test the predictions of our theory further against numerical simulations of inner
product MGs without agents’ decision noise, so T = 0 and σ [∞] = 1. Our equations
allow for such noise, but it represents a simple generalization that is well understood and
delays considerably the equilibration in simulations. In contrast to look-up table MGs, where
the non-Markovian nature of the microscopic process involves delayed forces going back
over a time interval �t = O(N−1 log N ), in inner product MGs this time interval scales as
�t = O(N0). This already limits severely the scope of numerical simulations, and, given the
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Figure 6. Observables c, φ and σ as functions of α = p/N , measured in numerical simulations for
f [A] = sgn(A) and S = 1. Measurements are taken over 200 · p time steps, after an equilibration
of 200 · p time steps; system sizes: pN2 = 230 (except for α = 16 and α = 32, where N = 1025
and N = 513, respectively). Each panel shows the result of four simulation runs: ζ = 0 (strictly
real histories, connected full circles) with biased and unbiased initial conditions, and ζ = 1 (strictly
fake histories, connected open circles) with biased and unbiased initial conditions. Biased initial
conditions: qi(0) = O(1) (zero average random); unbiased initial conditions: qi(0) = O(10−5)

(zero average random). Dotted curves give the theoretical predictions for ζ = 0 and ζ = 1, upon
assuming ergodic stationary states, with the vertical dashed line marking the transition value αc

below which the theory no longer applies.
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Figure 7. Observables c, φ and σ as functions of ζ , measured in numerical simulations for
f [A] = sgn(A), α = 2, and S = 1. Measurements are taken over 400 · N time steps, after
an equilibration of 400 · N time steps; system sizes: N = 1025. Circles give the simulation
results. Curves give the theoretical predictions, upon assuming ergodic stationary states. Strictly
real histories and stricly fake histories correspond to ζ = 0 and ζ = 1, respectively. The random
deviations between theory and simulations are compatible with the expected finite size effects of
order N−1/2 ≈ 0.03, except for the volatility where fluctuations are small and the weak predicted
trend is not confirmed.

multitude of control parameters to be varied, system sizes will have to remain modest, here
mostly N = O(103). Even then, finite size and finite time effects remain a serious problem,
especially for large α.

6.1. Inner product MG with f [A] = sgn(A)

In an earlier section we have already compared the observed spectra of the history covariance
matrix to our theoretical predictions, see figure 4, showing quite reasonable agreement. In
figures 6 and 7 we compare the predicted values of the observables {c, φ, σ } (obtained by
solving our order closed equations (97–104) numerically) to numerical simulation data, for
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Figure 8. Observables c, φ and σ as functions of ζ , measured in numerical simulations for
f [A] = A, α = 2, and S = 1. Measurements are taken over 400 · N time steps, after an
equilibration of 400 · N time steps; system sizes: N = 1025. Circles give the simulation results.
Curves give the theoretical predictions, upon assuming ergodic stationary states. Strictly real
histories and stricly fake histories correspond to ζ = 0 and ζ = 1, respectively. The deviations
between theory and simulations are compatible with the expected finite size effects of order
N−1/2 ≈ 0.03.

ζ ∈ {0, 1}, S = 1, and different values of α. We see our prediction that the transition point
is independent of ζ , i.e. of whether histories are real or fake, is confirmed quite convincingly.
In the ergodic regime α > αc, where our theory applies, we also observe a good agreement
in terms of the values of c and φ (except for large values of α, where finite size and finite
time effects become severe). In terms of the volatility σ , for which we had to make further
approximations (to express non-persistent terms in persistent ones) theory and experiment
exhibit deviations: the experimentally observed value for σ appears roughly independent of
ζ in the regime where the data are still reliable (if not a higher value for ζ = 0 compared to
ζ = 1), whereas the theory predicts a slight volatility reduction due to having real histories
compared to the fake ones. This suggests that, at least for f [A] = sgn(A), the usual crude
step to replace C(�) → c + (1 − c)δ��′ in the true formula (93) for the volatility, resulting in
the approximation (95), is less appropriate for real than for fake histories. A careful analysis
of the short-time behaviour of the kernels C and G will be required to understand why this
is so. Fortunately, the volatility drops out of our order parameter equations for ζ ∈ {0, 1}.
Upon measuring order parameters as a function of ζ , in order to probe those cases 0 < ζ < 1
where the volatility does play a vital role in closing our equations, one still observes excellent
agreement in those regimes where simulation data are reliable.

6.2. Inner product MG with f [A] = A

In contrast to the inner product MG with f [A] = sgn(A), for f [A] = A the theory predicts
a strong dependence of the volatility on the parameter ζ , with a degeneracy at ζ = 0. This
prediction was already confirmed qualitatively by the data in figure 3. In figure 8 we inspect
this dependence in more detail for α = 2, and find an excellent agreement between theory
and simulations, even for the volatility (in contrast to the situation for f [A] = sgn(A), where
the predicted volatility was somewhat lower than the observed one). According to (111) we
should expect that the only stationary solution for ζ = 0 will have σ = 0. In the limit ζ → 0
(where solving our closed equations becomes nontrivial as a result of having σ → 0 and
χ → ∞) figure 8 indeed confirms the predicted stationary state with vanishing volatility, and
the numerical solution of the order parameter equations confirms that χ → ∞. However, if
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Figure 9. Overall bids A(�) versus time � = 1 . . . 300, 000, as measured in numerical simulations
of the inner product MG with f [A] = A and ζ = 0 (fully real histories), in systems of size
N = 1025. Top row: unbiased initial conditions, qi(0) = O(10−5) (zero average random); bottom
row: biased initial conditions, qi(0) = O(1) (zero average random). The data indicate that there
exists a critical value α+

c such that for α > α+
c , rather than evolve towards σ = 0, the system is

unstable and the bid fluctuations diverge. If the (weak) dependence on initial conditions in the
graphs for α = 6 is not a finite size effect, then there is a parameter regime where the zero volatility
state and the ‘runaway’ solution coexist.

Figure 10. Overall bids A(�) versus time � = 1 . . . 300, 000, as measured in numerical simulations
of the inner product MG with f [A] = A, in systems of size N = 1025 and following unbiased
initial conditions. Here ζ = 0.1. The unstable state with diverging volatility exists also for
ζ > 0, with the instability setting in at a critical value α < α+

c (ζ ) that increases with ζ . Also the
characteristic time scale for the instability to manifest itself appears to increase with ζ (note the
different time scales of figures 9 and 10).

the experiment is repeated for larger values of α one finds that beyond a critical value α+
c ≈ 6

this zero volatility stationary state is no longer stable, and the fluctuations diverge. This is
illustrated in figure 9. In fact, this runaway solution is found to exist also for ζ > 0, see
figure 10, suggesting a ζ -dependent criticality α+

c (ζ ). Also at the lower end of the α-scale,
below the conventional transition point, one finds the system generally entering the runaway
state, see e.g. the volatility data in figure 11, below a second critical point α−

c (ζ ), provided one
chooses unbiased initial conditions. For intermediate α values, where the volatility remains
finite, our theory is found to predict the volatility σ correctly (within the accuracy limitations
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Figure 11. Left: volatility as a function of α = p/N , measured in numerical simulations for
f [A] = A and S = 1. Measurements are taken over 200 · p time steps, after 200 · p equilibration
time steps; system sizes: pN2 = 230 (except for α = 16 and α = 32, where N = 1025 and
N = 513, respectively). We show the results of four runs: ζ = 0.1 (predominantly real histories,
connected full circles) with biased and unbiased initial conditions, and ζ = 1 (strictly fake
histories, connected open circles) with biased and unbiased initial conditions; initial conditions are
as in previous figures. Dotted curves give the theoretical predictions for ζ = 0.1 and ζ = 1, upon
assuming ergodicity. The system destabilizes (σ = ∞) for α > α+

c (ζ ) (any initial conditions,
terminating branches at α ≈ 9) and for α < α−

c (unbiased initial conditions only, terminating
branch at α ≈ 0.2). Right: estimated critical line α−

c (ζ ) in the low α region of the (α, ζ ) plane,
marking the onset of the σ = ∞ instability, obtained by numerical simulations with N = 2049
(ζ < 0.77) and N = 4097 (ζ > 0.77). The marker sizes indicate the error bars. The vertical
dashed lines in both figures mark the χ → ∞ transition value αc below which the ergodic theory
no longer applies.

Figure 12. Typical example of the bid evolution close to the critical line that marks the onset
of the σ = ∞ instability, for f [A] = A (see previous figure for the estimated location of this
line). The large intermittent fluctuations exhibited by the system limit the reliability with which
the transition can be located via numerical simulations. The present example corresponds to
(α, ζ ) = (0.14, 0.32), with N = 2048 and unbiased initial conditions.

imposed by finite size effects). In the right panel of figure 11 we show the result of estimating
from numerical simulations the location of α−

c (ζ ) in the (α, ζ ) plane, which appears to
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approach ζ = 1 for α → 0; determining this line experimentally is not entirely trivial in view
of the (expected) nontrivial bid fluctuations close to this line, see eg. figure 12. Carrying out
a similar exercise for the location of the instability α+

c (ζ ) in the high α region is unfortunately
ruled out, due to the extreme relation times required for large α. In summary: for sufficiently
small ζ (i.e. sufficiently ‘real’ histories), the usual high volatility state of conventional MGs
in the non-ergodic regime becomes a runaway solution in inner product MGs with linearly
sampled histories (a true instability with infinite volatility), which for ζ = 0 vanishes slightly
below the standard MG’s χ = ∞ transition α = αc if one increases α, but then re-appears at
a larger value α+

c (ζ ) and there becomes the only solution. It must in principle be possible to
calculate the critical values α±

c (ζ ) from our order parameter equations; in practice, however,
this requires solving our equations for the correlation and response functions (formulated in
terms of both the effective agent process and the effective overall bid process) at finite times,
which at present we are unable to do.

7. Discussion

In this paper we have generalized the theory of look-up table Minority games with real market
history [11] to a larger family of models, and applied it to MGs with so-called inner product
strategy definitions. The latter MG versions had, surprisingly, never been solved; not even
in their simplest Markovian version where the histories are fake. At a mathematical level it
was not a priori clear which form the inner-product MG theory would take: in [11] it was
found that the key object in the theory of look-up table MGs with real market history was the
so-called history frequency distribution, but already on simple scaling grounds it is clear that
this object cannot be defined for inner product MGs. It is satisfactory to find in the present
study how the generating functional formalism resolves the issue: a more general quantity
takes over the role of the history frequency distribution, namely the eigenvalue spectrum of the
history covariance matrix, which reduces to the former for look-up table MGs but is also well-
defined for inner product MGs. This resolution involves a generalization of the short history
correlation time ansatz that led in [11] to closed stationary state order parameter equations,
resulting (after a random matrix spectrum calculation) also for the present inner-product MGs
in closed equations for observables such as the persistent correlations, the fraction of ‘frozen’
agents, the integrated response, and the market volatility (although the formula for the latter
as always involves further approximations).

We find, provided all the relevant integrals and averages exists, that the phase diagrams of
the two MG versions are identical. However, we encounter interesting differences in terms of
the models’ static and dynamic phenomenology, dependent upon which functions f [A] of the
past overall market bids A are being sampled in the inner product MGs. For bounded functions
such as f [A] = sgn(A) one continues to find behaviour that, although quantitatively different,
is qualitatively similar to that of look-up table MGs. If the histories are strictly real, the theory
even predicts complete universality of the static observables, independent of the choice made
for f [A]. In contrast, for unbounded sampling functions such as f [A] = A the situation is
quite different. There can now be a profound dependence of the volatility on the degree to
which the histories are real. Especially when the histories are strictly real and f [A] = A we
find that the inner product MG has only one stationary solution, where the volatility σ is zero
and the model is structurally critical (i.e. χ = ∞). In terms of the usual control parameter
α = p/N , we find that in the regime α > αc (the standard non-ergodicity transition of the
MG) this state (σ, χ) = (0,∞) can only be reached for α < α+

c (ζ ), with α+
c (0) ≈ 6 and

α+
c (ζ ) increasing with ζ . For α > α+

c (ζ ) the system destabilizes and the fluctuations diverge.
Whether this divergence represents a structural instability that is independent of the system
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size N, or marks system states where the bid fluctuations scale differently with N than in look-
up-table MGs, is as yet unclear. In the low α regime one finds a similar critical line α−

c (ζ )

marking a destabilization transition as one reduces α further, with σ = ∞ for α < α−
c (ζ ), but

here this destabilization occurs only for unbiased initial conditions.
Those technical questions that remain open in the present study are the familiar ones that

are similarly answered for all previous MG models. They relate mostly to our inability so far
to extract from our order parameter equations exact solutions for time-dependent observables
(beyond just a few time steps), or exact stationary state solutions in the non-ergodic regime. In
addition one would like to explore further the possibility of finding solutions for MG versions
in which the effects of having real histories are more dramatic; both the present study and
its predecessor [11] rely on expansions that require history correlations to be weak. Finally,
we would like to point out that the observed instability of the f [A] = A inner product MG
is qualitatively different from what has been observed in previous MG versions. Although
in its present form this specific model is ill-constructed, it could perhaps form the basis of
new models aimed at explaining more robustly the so-called stylized facts in real markets,
since its structural instability is not a finite size effect and therefore requires no careful tuning
of control parameters. The phenomenology observed for f [A] = A is novel, should be
expected to emerge also for other unbounded choices for the sampling function f [A] (it
would be very interesting to determine the conditions on f [A] for which the MG exhibits
structural instability), and emphasizes even more the need for progress in solving the GFA
order parameter equations for finite times.
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